GANS for Sequences of Discrete Elements with the Gumbel-softmax Distribution
نویسندگان
چکیده
Generative Adversarial Networks (GAN) have limitations when the goal is to generate sequences of discrete elements. The reason for this is that samples from a distribution on discrete objects such as the multinomial are not differentiable with respect to the distribution parameters. This problem can be avoided by using the Gumbel-softmax distribution, which is a continuous approximation to a multinomial distribution parameterized in terms of the softmax function. In this work, we evaluate the performance of GANs based on recurrent neural networks with Gumbel-softmax output distributions in the task of generating sequences of discrete elements.
منابع مشابه
Categorical Reparameterization with Gumbel-Softmax
Categorical variables are a natural choice for representing discrete structure in the world. However, stochastic neural networks rarely use categorical latent variables due to the inability to backpropagate through samples. In this work, we present an efficient gradient estimator that replaces the non-differentiable sample from a categorical distribution with a differentiable sample from a nove...
متن کاملIclr 2017 C Ategorical R Eparameterization with G Umbel - S Oftmax
Categorical variables are a natural choice for representing discrete structure in the world. However, stochastic neural networks rarely use categorical latent variables due to the inability to backpropagate through samples. In this work, we present an efficient gradient estimator that replaces the non-differentiable sample from a categorical distribution with a differentiable sample from a nove...
متن کاملLearning Latent Permutations with Gumbel-Sinkhorn Networks
Permutations and matchings are core building blocks in a variety of latent variable models, as they allow us to align, canonicalize, and sort data. Learning in such models is difficult, however, because exact marginalization over these combinatorial objects is intractable. In response, this paper introduces a collection of new methods for end-to-end learning in such models that approximate disc...
متن کاملEmergence of Language with Multi-agent Games: Learning to Communicate with Sequences of Symbols
Learning to communicate through interaction, rather than relying on explicit supervision, is often considered a prerequisite for developing a general AI. We study a setting where two agents engage in playing a referential game and, from scratch, develop a communication protocol necessary to succeed in this game. Unlike previous work, we require that messages they exchange, both at train and tes...
متن کاملConfidence interval for the two-parameter exponentiated Gumbel distribution based on record values
In this paper, we study the estimation problems for the two-parameter exponentiated Gumbel distribution based on lower record values. An exact confidence interval and an exact joint confidence region for the parameters are constructed. A simulation study is conducted to study the performance of the proposed confidence interval and region. Finally, a numerical example with real data set is gi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1611.04051 شماره
صفحات -
تاریخ انتشار 2016